State-space Solutions to the Dynamic Magnetoencephalography Inverse Problem Using High Performance Computing.

نویسندگان

  • Christopher J Long
  • Patrick L Purdon
  • Simona Temereanca
  • Neil U Desai
  • Matti S Hämäläinen
  • Emery N Brown
چکیده

Determining the magnitude and location of neural sources within the brain that are responsible for generating magnetoencephalography (MEG) signals measured on the surface of the head is a challenging problem in functional neuroimaging. The number of potential sources within the brain exceeds by an order of magnitude the number of recording sites. As a consequence, the estimates for the magnitude and location of the neural sources will be ill-conditioned because of the underdetermined nature of the problem. One well-known technique designed to address this imbalance is the minimum norm estimator (MNE). This approach imposes an L(2) regularization constraint that serves to stabilize and condition the source parameter estimates. However, these classes of regularizer are static in time and do not consider the temporal constraints inherent to the biophysics of the MEG experiment. In this paper we propose a dynamic state-space model that accounts for both spatial and temporal correlations within and across candidate intra-cortical sources. In our model, the observation model is derived from the steady-state solution to Maxwell's equations while the latent model representing neural dynamics is given by a random walk process. We show that the Kalman filter (KF) and the Kalman smoother [also known as the fixed-interval smoother (FIS)] may be used to solve the ensuing high-dimensional state-estimation problem. Using a well-known relationship between Bayesian estimation and Kalman filtering, we show that the MNE estimates carry a significant zero bias. Calculating these high-dimensional state estimates is a computationally challenging task that requires High Performance Computing (HPC) resources. To this end, we employ the NSF Teragrid Supercomputing Network to compute the source estimates. We demonstrate improvement in performance of the state-space algorithm relative to MNE in analyses of simulated and actual somatosensory MEG experiments. Our findings establish the benefits of high-dimensional state-space modeling as an effective means to solve the MEG source localization problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally-efficient algorithms for sparse, dynamic solutions to the EEG source localization problem.

OBJECTIVE Electroencephalography (EEG) and magnetoencephalography (MEG) non-invasively record scalp electromagnetic fields generated by cerebral currents, revealing millisecond-level brain dynamics useful for neuroscience and clinical applications. Estimating the currents that generate these fields, i.e., source localization, is an ill-conditioned inverse problem. Solutions to this problem have...

متن کامل

Using Markov chain Monte Carlo to solve a time-varying stat-space model for Magnetoencephalography inverse problem

Magnetoencephalography(MEG) is an imaging technique used to measure the magnetic signals outside the head produced by the electrical activity inside the brain. The MEG inverse problem, localizing the electrical source from the magnetic signal measurements, is ill-posed, that is, there are an infinite number of correct solutions. The common source localization methods assume the source does not ...

متن کامل

Mapping human brain function with MEG and EEG: methods and validation.

We survey the field of magnetoencephalography (MEG) and electroencephalography (EEG) source estimation. These modalities offer the potential for functional brain mapping with temporal resolution in the millisecond range. However, the limited number of spatial measurements and the ill-posedness of the inverse problem present significant limits to our ability to produce accurate spatial maps from...

متن کامل

A Statistical Approach to the Inverse Problem in Magnetoencephalography

Magnetoencephalography (MEG) is an imaging technique used to measure the magnetic field outside the human head produced by the electrical activity inside the brain. The MEG inverse problem, identifying the location of the electrical sources from the magnetic signal measurements, is ill-posed; that is, there are an infinite number of mathematically correct solutions. Common source localization m...

متن کامل

A spatiotemporal dynamic distributed solution to the MEG inverse problem

MEG/EEG are non-invasive imaging techniques that record brain activity with high temporal resolution. However, estimation of brain source currents from surface recordings requires solving an ill-conditioned inverse problem. Converging lines of evidence in neuroscience, from neuronal network models to resting-state imaging and neurophysiology, suggest that cortical activation is a distributed sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The annals of applied statistics

دوره 5 2B  شماره 

صفحات  -

تاریخ انتشار 2011